可按Ctrl+D收藏 蚂蚁资源网

蚂蚁资源网

仿射系统(用仿射解决圆锥曲线)

  • 全部评论(3)
  • 外网
  • 仿射性在生活中确实没什么用。  仿射性是仿射几何的基本概念,研究的是几何对象的仿射不变性。  若一个图形具有某种性质或者某个量,在平行射影下,如果不变,称这个性质为仿射不变性质,这个量称为仿射不变量。单比不变性、同素性、结合性都是仿射不变性质(也就是说,仿射对应把共点的线变成共点的线,把共线的点变成共线的点)。平行四边形在仿射对应下的象还是平行四边形。
  • 2022-01-04 23:11:00
  • 无敌
  • 在有限的尺寸中,每个仿射变换可以给出一个矢量B,其可以写入A,并且附加的柱BA仿射变换对应于矩阵和矢量的乘法,而仿射变换的复合对应于正常矩阵乘法,只要添加了附加的矩阵线,除了主侧,1,1,应该添加一个列向量1。
  • 2022-01-04 23:09:56
  • hedianshui
  • 仿射函数的说明,仿射函数即由1阶多项式构成的函数,一般形式为 f (x) = A x + b,这里,A 是一个 m×k 矩阵,x 是一个 k 向量,b是一个m向量,实际上反映了一种从 k 维到 m 维的空间映射关系。设f是一个矢性(值)函数,若它可以表示为f(x1,x2,…,xn)=A1x1+A2x2+…+Anxn+b,其中Ai可以是标量,也可以是矩阵,则称f是仿射函数。其中的特例是,标性(值)函数f(x)=ax+b,其中a、x、b都是标量。此时严格讲,只有b=0时,仿射函数才可以叫“线性函数”(“正比例”关系)。就一般情形,函数f是仿射函数的充要条件是:对于任意两组向量x1,x2,…,xn与y1,y2,…,yn,对于任意0<=p<=1,如果f[px1+(1-p)y1,px2+(1-p)y2,…,pxn+(1-p)yn]==pf(x1,x2,…,xn)+(1-p)f(y1,y2,…,yn)。(“==”表示恒等)一般称线性组合“p1x1+p2x2+…+pnxn,其中p1+p2+…+pn=1”为仿射组合;一般称所有pi>=0的仿射组合为凸组合。其实一般意义上的仿射函数是一个矩阵函数,如果构成一个类似LMI的不等式,可以成为仿射矩阵不等式.
  • 2022-01-04 23:09:56
  • 商品推荐